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CONTINUOUS SPEED CHANGES FOR FLOWS

BY
D.S. ORNSTEIN" AND M. SMORODINSKY"

ABSTRACT

Given a smooth flow on a compact manifold, it is shown that every measure
theoretic isomorphism class that can be obtained by a measurable time change
can already be obtained by a continuous time change with a derivative at every
point.

1. Introduction

In recent years a lot of work has been done on the question of when two
measure preserving flows are isomorphic. About a year ago, Feldman initiated a
parallel theory [1] and [10] which treats the problem of determining which flows
can be obtained from a given flow by changing the speed (but not the direction)
of the flow along its orbits. (An equivalent formulation is: when can we find a 1-1
invertible measurable mapping taking orbits onto orbits, or which flows have the
same orbit structure.) In particular, the theory characterizes the flows obtained
by changing the speed in the Bernoulli flow.

All of this is done in the framework of measurable fiows, but many of the
examples which originally motivated the theory were smooth flows on manifolds.
Thus, if we start with a smooth flow on a manifold, it is reasonable to ask what
happens if we make a smooth speed change.

Our theorem says that any flow that can be obtained by a measurable speed
change can be obtained by changing the speed so that the new speed is
continuous and even has a differential at every point, but not necessarily a
bounded one.

An example of special interest is the geodesic flow on a surface of negative
curvature. This is known to be isomorphic to the Bernoulli flow [6] and we can
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thus characterize the flows that can be obtained by a measurable and hence
continuous speed change. For example, we show in §4 that we can get
uncountably many non-isomorphic K flows of the same entropy. On the other
hand, if the speed change is smooth enough the flow must be the Bernoulli flow
(because it is Anosov). (The minimal smoothness condition needed to force
Bernoulliness is not known.)

Our result also has some bearing on the problem of whether every transforma-
tion or flow of finite entropy has a smooth model. In this direction Lind and
Thouvenot have shown that any transformation of finite entropy is isomorphic to
a homeomorphism of the 2-torus that preserves Lebesgue measure, while Katok
recently constructed a smooth K-automorphism that is not Bernoulli or even
loose Bernoulli.

2. Measurable flows and time changes

Let (2, 8, u ) be a probability measure space. A measurable flow S, t ER (R
the real numbers) is a group of measurable transformations

S:0-0
such that S,., = S, S,, and the mapping
S:RxQ—-0Q

defined by S(t,w) is measurable with respect to the product measurable
structure of R X Q) (R equipped with the Borel structure). The flow is measure
preserving if for all t €R, S, is a measure preserving transformation. Let
v(w) >0 be a real valued positive integrable function on . ([v(w)]™* will be the
new speed.) A new flow, which will be denoted by S, is obtained in the following
way. Let

i(w,d)= Ld v(Ssw)ds

(if S, moves at unit speed, @ (w, d) will be the time it takes the new flow to move
d units starting from ). For fixed o, i (w, d) is a strictly monotone function of d.
Let u(w, t) be the inverse function of i (w, 1), i.e.,

(1)
j v(Sw)ds =t
0

(u(w, t) is the distance moved in ¢ units of time.) Define the new flow by

S (w) = Sun(w).
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If S, preserves the measure o then St preserves an equivalent measure £ which
is given by dg = vdu.

Two flows which are defined on the same space and which share a common
cross-section and induce the same transformation on that cross-section can be
obtained each from the other by such a speed change.

3. Speed changes with a derivative at every point

Let M be a compact C® manifold and S, a C® flow on M which preserves a
regular Borel measure of M. Consider all the flows S7 which are obtained from
S: by a measurable speed change, i.e., v(w) is measurable. We show that every
such flow is isomorphic to one which is obtained by a speed change which has a
derivative at every point.

To this end we need the following:

Lemma 1. Let S, be a smooth ergodic flow on a C'V compact manifold M,
preserving a Borel regular measure u. Let v(x) >0 be an integrable function on M.
Let C be a closed subset of M of the form

C=U SA
0si=p
where A is a smooth cross-section of S, such that the return time to A is greater
than p.

Then given € >0 we can find 9(x)>0 integrable such that

(i) ©(x) is smooth on M — C.

(1) |v(x)—d(x)|<e (L. norm).

(iii) There exists an isomorphism ¢(x) between the flows S* and S° and
plllx — d(x)[|<e}>1—¢, where [|x —y || is a Riemannian distance between the
point x,y € M.

Proor. Let v be a measure on A such that u is represented as a product
measure of v and A the Lebesgue measure on the part of A X R under the
return function f(x,), xo € A, given by the flow S.

Approximate v(x) by a smooth functions ¥ in such a way that

[ 1o0)- 50y 1de ()<

The choice of & will be indicated later.
Consider the function

flxo)
g(x0) = J |v(Sx0) — #(Sxo)|dt.
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Using Fubini’s theorem we can conclude that

J’ g(X())dV < 6

Denote by T the v-preserving transformation on the cross-section v induced by
the flow §.

Let y >0 be a fixed number y > 8. For x, € A let (k, /) be a pair of integers
k =0 =1 such that the following inequalities hold:

1 ! )
T 7 T'xo) <
e 8(Tw<y
and
1 L )
I k_,_lEg(T‘xo)é‘y fork=l's1l
- i=k

For almost every point x,, by the ergodic theorem, there is a pair (k (x,), {(xo))
such that k(x,) is minimal. It is an easy combinatorial fact that the pair
(k (xa), 1(x0)) is unique.
Partition the set A into Ay, sets such that
Awt = {xo] (k (o), 1(x0)) = (k, D).

The sets A, form a complete partition of A. Consider the set
A = U A(),k.
k=0

A is a measurable cross-section of the flow S.. Since S? has the same orbits as S,
A is also a cross-section for S¢. We want to change & only on C in such a way
that the return to A under the new flow will be the same as under S°.

A point x, € Ay, traverses the set C,k +1 times before it returns to A.
Assume, without loss of generality, that || S,(w)— S,(w)||= |t — s|. Then, we can
change ¢ to obtain a function ¥, in such a way that

[6-8|<vylp

To indicate the choice of 8 and y we use the Maximal Ergodic Theorem to assert
that

A 1 <_8_
WA~ A< L glxdv(x) s

We choose y =3(¢ - p) and § <3e and so small that
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J;_Aoo f(xo)dv(xo) < &,

where f(xo) is the return time function under the flow S, to the cross-section A.
Now, we define the isomorphism ¢ in the following way.
Let x,€ A and x = S%x,, 0 =t = g(t) where g(¢) is the return time under S*
to A (which is equal almost everywhere to the return time under S°¢). Put

#(x) = S7(xo).
It is obvious that (i) and (ii) hold by the choice of ® and that (iii) is satisfied on

the set
A={x:x=5(x), %€ Ao, 0 =t < g(x0)}.

We are now in position to prove the main result.

THEOREM 1. Let S, be a smooth ergodic flow on a C® compact manifold M,
preserving a regular Borel measure p. Let v(x)>0,x €M be an integrable
function and S? the flow obtained from S, by the time change induced by v.

Then there exists a function ©(x) >0 integrable and with a derivative at every
point such that the flow S¢ is measure theoretically isomorphic to S,

Proor. Let {C,}, n=1,2,--- be a fixed sequence of closed sets which are
obtained by “thickening” a smooth cross-section A,, i.e.,
An = U StAm

0=1=p,

and such that the return time to A, under S, is greater than p,, C, are disjoint
and C, tend to a single point x.. That is, for every sequence x, € C,, X, = Xo.
Such a sequence {C.} certainly exists because locally the flow S, is like a flow of
unit speed along one of the coordinates in an m -dimensional euclidean space.

Let 8, denote the distance between C, and C,.4, i.e.,

8, = inf{| xo — Xns1[[: X € Co; Xns1 € Coi}.
Fix a sequence &, = 8./2" >0.

We use Lemma 1 to define a sequence of integrable functions v,(x)>0,
n=0,1,--- and mapping ¢.: M—M, n=1,2,--- in the following way.

Put v, = v, and if v._, has been defined use Lemma 1 to get v, = ¥ and ¢, = ¢
with respect to C,, €. and v,.-,. Also, notice that in choosing § of Lemma 1 we
can assume that © = v,_, outside C,., because v,_, is smooth there.

Now, by the choice of ¢,, limv,(x) exists everywhere. Call it d. Using the
Borel-Cantelli lemma we assert that for almost all x, | ¢.(x)—x || = &, only a
finite number of times and therefore the mapping
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Un = Guoburo 0

converge almost everywhere to a mapping .

The function ¥ is certainly smooth for all points different from x.. At x. the
function is equal to v,. So in order to check the existence of its derivative there
one has to check the difference ratio along sequence {x.}, x, € C,. Therefore, the
existence follows from the choice of &..

Let us show that ¢ is an isomorphism mapping between S° and S°. Fix ¢, and
let x be a point such that lim ¢, (x) exists. We have to show that if y = S7 x then
it takes the time t, for the point §, to get ¢, under S°. Obviously it takes time t,
for Y.x to get to .y under S$°~ because ¢, is an isomorphism map between S$°
and S™. Now, by continuity the claim follows.

4. K-flows of finite entropy

We now define a construction which will yield a class KF of uncountably many
non-isomorphic K-flows all of the same finite entropy. Every such flow will be
loosely Bernoulli (i.e., obtainable by a speed change of the finite entropy
Bernoulli flow).

The construction will be a variant of the one described in [8].

The generating partitions of each S, € KF will consist of four sets
(P,P,P,,P.,).

Instead of defining the flow formally through the construction of the continu-
ous nth gadget, as in [8], we shall rather describe informally the type of
continuous n-blocks that arise.

An n-block will begin with a P;-interval, the length of X;. X; will have uniform
distribution on the n” values {1/n,2/n, - - -, (n>— 1)/n, n}. The P;-interval will be
followed by an (n — 1)-block, then by a P;-interval of length s(n), then by an
(n — 1)-block, then by a P,-interval of length 2s(n), etc, - -. There will be 2"
(n — 1)-blocks separated by P,-intervals with increasing order of length. Or,
depending on a fixed function g(n), the P,-intervals will appear in decreasing
order. The last P,-interval will be followed by a P.,-interval of length n - X; so
that the one name will determine X; and then a P,.-interval of length n’+ n —
n; — X; (so, that the length of an n-block is fixed).

The function s(n) will be of the form

s(ny=c-n*
where the constant ¢ will be chosen large enough as in [4].

THEOREM 2. Every flow belonging to the class KF is a K-flow of finite entropy
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and is obtainable from the Bernoulli flow by a time change. And, there are
uncountably many non-isomorphic flows in KF.

Proor. We omit the proof of the K -property because it is completely similar
to the proofs in [8] and [4].

To show that the flows in KF are of finite entropy we prove that P =
(P, P, P.,, P.)) is a generating partition under the transformation $, for S, € KF.

We have to show that the discrete S;-P-name determines the continuous
S.-P-name. Now, the discrete S,-P-name certainly determines the type of the
continuous n-block (which depends only on X; of the block). We have to show
that for given & >0 the S;-P-name determines the beginning of the continuous
n-block up to £ with probability one.

Given an n-block it will be nested, with pronanility one, in infinitely many
m-blocks, m > n, such that X;{m) of those blocks will be such that

X;(m)(mod1)<e.

Also, because X;(mod1) are non-arithmetic, with probability one, one of the
n-blocks will have a starting time (mod1) which is less than e. This will
determine the starting time of that block up to £. This in turn will determine the
starting time of all the n-blocks which are nested in this m-block up to ¢
(because their type is known).

Finally, to prove that S, is obtained from a Bernoulli flow it is enough to show
that there is a measurable cross-section of the flow such that the induced
transformation on it is isomorphic to a Bernoulli shift, since the Bernoulli flow
has a Bernouili cross-section [3].

Such a cross-section is obtained if we consider the base of the nth continuous
gadget of the flow (which we did not define formally). Namely, it is the set of all
points such that the time zero is the beginning of an n-block.

The proof of the fact that this cross-section is isomorphic to a Bernoullj shift
can be derived as an application of the cutting and independent stacking method.
Such a proof was given in {9] for the G (n) gadgets of the Ornstein-Shields class
of K-automorphisms.
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