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CONTINUOUS SPEED CHANGES FOR FLOWS 

BY 

D. S. ORNSTEIN* A N D  M. SMORODINSKY** 

ABSTRACT 

Given a smooth flow on a compact  manifold, it is shown that every measure  
theoretic isomorphism class that can be obtained by a measurable  t ime change 
can already be obtained by a cont inuous time change with a derivative at every 
point. 

1. Introduction 

In recent years a lot of work has been done on the question of when two 

measure preserving flows are isomorphic. About  a year ago, Feldman initiated a 

parallel theory [1] and [10] which treats the problem of determining which flows 

can be obtained from a given flow by changing the speed (but not the direction) 

of the flow along its orbits. (An equivalent formulation is: when can we find a 1-1 

invertible measurable mapping taking orbits onto orbits, or which flows have the 

same orbit structure.) In particular, the theory characterizes the flows obtained 

by changing the speed in the Bernoulli flow. 

All of this is done in the framework of measurable flows, but many of the 

examples which originally motivated the theory were smooth flows on manifolds. 

Thus, if we start with a smooth flow on a manifold, it is reasonable to ask what 

happens if we make a smooth speed change. 

Our theorem says that any flow that can be obtained by a measurable speed 

change can be obtained by changing the speed so that the new speed is 

continuous and even has a differential at every point, but not necessarily a 

bounded one. 

An example of special interest is the geodesic flow on a surface of negative 

curvature. This is known to be isomorphic to the Bernoulli flow [6] and we can 
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thus characterize the flows that can be obtained by a measurable and hence 

continuous speed change. For example, we show in w that we can get 

uncountably many non-isomorphic K flows of the same entropy. On the other  

hand, if the speed change is smooth enough the flow must be the Bernoulli flow 

(because it is Anosov). (The minimal smoothness condition needed to force 

Bernoulliness is not known.) 

Our result also has some bearing on the problem of whether every transforma- 

tion or flow of finite entropy has a smooth model. In this direction Lind and 

Thouvenot  have shown that any transformation of finite entropy is isomorphic to 

a homeomorphism of the 2-torus that preserves Lebesgue measure, while Katok 

recently constructed a smooth K-automorphism that is not Bernoulli or even 

loose Bernoulli. 

2. Measurable flows and time changes 

Let (~, ~3,/z) be a probability measure space. A m e a s u r a b l e  f l ow  S,, t E R (R 

the real numbers) is a group of measurable transformations 

S,: l l - -* l l  

such that K+~ = K o S~, and the mapping 

S: R x lq---~ l'l 

defined by S(t ,  oJ) is measurable with respect to the product measurable 

structure of R x 1~ (R equipped with the Borel structure). The flow is measure 

preserving if for all t E R, S, is a measure preserving transformation. Let 

v(oJ) > 0 be a real valued positive integrable function on 1~. ([v(oJ)]-' will be the 

new speed.) A new flow, which will be denoted by S~, is obtained in the following 

way. Let 

a(o , d)  = v(S,o,)ds 

(if S, moves at unit speed, a(oJ, d) will be the time it takes the new flow to move 

d units starting from o) .  For fixed oJ, a(oJ, d) is a strictly monotone function of d. 

Let u(o~, t) be the inverse function of a(~o, t), i.e., 

o ( ' ' )  v ( S ,  oJ ) d s  = t. 

(u(oJ, t) is the distance moved in t units of time.) Define the new flow by 

s ; ( , o )  = 
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If S, preserves the measure /z  then $7 preserves an equivalent measure/2  which 

is given by d/2 = vdlz. 

Two flows which are defined on the same space and which share a common 

cross-section and induce the same transformation on that cross-section can be 

obtained each from the other  by such a speed change. 

3. Speed changes with a derivative at every point 

Let M be a compact  C (') manifold and S, a C ") flow on M which preserves a 

regular Borel measure of M. Consider all the flows $7 which are obtained from 

S, by a measurable speed change, i.e., v(to) is measurable.  We show that every 

such flow is isomorphic to one which is obtained by a speed change which has a 

derivative at every point. 

To this end we need the following: 

LEMMA 1. Let S, be a smooth ergodic flow on a C ~ compact manifold M, 

preserving a Borel regular measure I~. Let v (x ) > 0 be an integrable function on M. 

Let C be a closed subset of M of the form 

C =  I,.) S,A 
O~t<=p 

where A is a smooth cross-section of S, such that the return time to A is greater 

than p. 

Then given e > 0 we can find ~ (x) > 0 integrable such that 

(i) ~)(x ) is smooth on M -  C. 

(ii) I v ( x ) - , 5 ( x ) l <  e (L| norm). 

(iii) There exists an isomorphism 4,(x) between the flows S v and S ~ and 

(11 x - 4, (x)l l  < ~ ~ >  1 - e, where II x - y fl is a Riemannian distance between the 

point x, y E M. 

PROOF. Let ~, be a measure on A such tha t / z  is represented as a product 

measure of v and A the Lebesgue measure on the part of A • R under the 

return function f(xo), Xo E A,  given by the flow S,. 

Approximate  v(x )  by a smooth functions T5 in such a way that 

f l y ( x ) -  < 8. , 5 ( x ) l d~ (x )  

The choice of ~ will be indicated later. 

Consider the function 

g (Xo) = f[*~ Iv (S, x0)- ,5(S,xo) ldt. 
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Using Fubini ' s  t h e o r e m  we can conclude that  

f g(x,,)dv<8. 

D e n o t e  by T the u-preserv ing  t rans format ion  on the cross-sect ion v induced by 

the flow S,. 

Let  y > 0 be a fixed n u m b e r  3' > 8. For  x0 ~ A let (k, l) be a pair  of integers  

k _-< 0 ~_ l such that  the following inequali t ies hold: 

I 

1 E g(T'xo)<y 
l - k + l i = k  

and 

1 l' 

l , _k+l~g(T ' xo )>-_7  fork~l '<=l.  
i = k  

For  a lmost  every  point  Xo, by the ergodic  theo rem,  there  is a pair  (k(xo), l(xo)) 
such that  k(xo) is minimal .  It is an easy combina tor ia l  fact that  the pair  

(k(xo), l(xo)) is unique.  

Par t i t ion the set A into Akj sets such that  

Ak., = {Xol(k(xo), l(xo)) = (k, /)}. 

The  sets Ak.~ fo rm a comple t e  par t i t ion of A. Cons ider  the set 

-g-= 0 Ao,~. 
k = O  

is a measu rab l e  cross-sect ion of the  flow S,. Since S~ has the same  orbi ts  as S,, 
/i. is also a cross-sect ion for  S~. We  want  to change  t5 only on C in such a way 

that  the re turn  to fi, unde r  the new flow will be  the same  as under  S~. 

A point  x0E  Ao.k t raverses  the set C, k + 1 t imes before  it re turns  to .g,. 

Assume ,  wi thout  loss of general i ty ,  that  II s , ( to)  - s , (w)II  --< I t - s I. Then ,  we can 

change  t~ to obta in  a funct ion tT, in such a way that  

T o  indicate  the  choice of  6 and  y we use the MaximalErgodic Theorem to assert  

that  

if. <8 u(.~ - Ao,o) < ff  g (xo)du (Xo) = f t .  

-~e and so small  that  W e  choose  y = �89 - p )  and 6 < 2  
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X-Ao.o f(xo)dv(xo) < 

where f(Xo) is the return t ime function under  the flow S, to the cross-section A. 

Now, we define the i somorphism 4' in the following way. 

Let  Xo ~ ,~ and x = STxo, 0 <= t <- g( t )  where  g( t )  is the return t ime under  $7 

to ,4 (which is equal almost  everywhere  to the return t ime under  SO,). Put 

4'(x ) = s ò  (xo). 

It is obvious  that (i) and (ii) hold by the choice of o3 and that (iii) is satisfied on 

the set 

A = {x: x = so`(Xo), Xo E Ao,o, 0 = t < g(xo)}. 

We  are now in position to prove the main result. 

THEOREM 1. Let S, be a smooth ~rgodic flow on a C ") compact manifold M, 

preserving a regular Borel measure tz. Let v ( x ) > O , x  E M be an integrable 

function and S ~ the flow obtained from S, by the time change induced by v. 

Then there exists a function ~3 (x ) > 0 integrable and with a derivative at every 

point such that the flow S ~ is measure theoretically isomorphic to SO .̀ 

PROOF. Let  {C.}, n = 1 , 2 , . . .  be a fixed sequence of closed sets which are 

obta ined by " th ickening"  a smooth  cross-section A, ,  i.e., 

A , =  u S,A,, 

and such that the return time to A ,  under  S, is greater  than p., C. are disjoint 

and C. tend to a single point  x| That  is, for every sequence x. ~ C,, x. ~ x~. 

Such a sequence {C.} certainly exists because  locally the flow S, is like a flow of 

unit speed along one of the coordinates  in an m-d imens iona l  eucl idean space. 

Let  8, deno te  the distance be tween C. and C,+1, i.e., 

8. = inf(ll x. - Xo+,ll: x~ e c . ;  c~ 

Fix a sequence  e. = 8. /2" > 0. 

We  use L e m m a  1 to define a sequence  of integrable functions v. ( x ) > 0 ,  

n = 0, 1,- �9 �9 and mapping  4'. : M ~ M, n = 1,2 , .  �9 �9 in the following way. 

Put v0 = v, and if v._, has been  defined use L e m m a  1 to get v. = @ and 4'. = 4' 

with respect to C., e. and v._~. Also, notice that in choosing t~ of L e m m a  1 we 

can assume that t3 = v._, outside C._, because v._, is smooth  there.  

Now, by the choice of ~., lira v . (x )  exists everywhere.  Call it 13. Using the 

Bore l -Cante l l i  l emma we assert that for  almost a l lx ,  II 4 ' . ( x ) - x  II >= ~. only a 

finite n u m b e r  of t imes and therefore  the mapping  
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6 =4 ,  o4,._, . . . . .  4, 

converge almost everywhere to a mapping ~. 

The function 13 is certainly smooth for all points different from x| At x| the 

function is equal to v~. So in order to check the existence of its derivative there 

one has to check the difference ratio along sequence {x,}, x, U C,. Therefore,  the 

existence follows from the choice of e,. 

Let us show that ~ is an isomorphism mapping between S ~ and S ~. Fix to and 

let x be a point such that iim ~b,(x) exists. We have to show that if y = S,~ then 

it takes tJae time to for the point ~x to get ~y under S ~. Obviously it takes time to 

for ~b,x to get to ~b,y under S ~" because ~b, is an isomorphism map between S ~ 

and S ~ . Now, by continuity the claim follows. 

4. K-flows of finite entropy 

We now define a construction which will yield a class K F  of uncountably many 

non-isomorphic K-flows all of the same finite entropy. Every such flow will be 

loosely Bernoulli (i.e., obtainable by a speed change of the finite entropy 

Bernoulli flow). 

The construction will be a variant of the one described in [8]. 

The generating partitions of each S, E KF will consist of four sets 

(PI, Ps, P2,, P~2). 

Instead of defining the flow formally through the construction of the continu- 

ous nth gadget, as in [8], we shall rather describe informally the type of 

continuous n-blocks that arise. 

An n-block will begin with a PI-interval, the length of X I. X r will have uniform 

distribution on the n 2 values {1/n,2/n,.. . ,  (n 2-  1)/n, n}. The Pr-interval will be 

followed by an (n - 1)-block, then by a P~-interval of length s(n),  then by an 

(n - 1)-block, then by a Ps-interval of length 2s(n),  e t c , . - . .  There will be 2" 

( n -  1)-blocks separated by P,-intervals with increasing order of length. Or, 

depending on a fixed function g(n) ,  the P~-intervals will appear in decreasing 

order. The tast P,-interval wiU be followed by a P,,-interval of length n - X  t so 

that the one name will determine X r and then a P,2-interval of length n2+ n - 

n r - X  I (so, that the length of an n-block is fixed). 

The function s(n) will be of the form 

s(n) = c - n '  

where the constant c will be chosen large enough as in [4]. 

THEOREM 2. Every flow belonging to the class KF is a K-flow of finite entropy 
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and is obtainable from the Bernoulli flow by a time change. And, there are 

uncountably many non-isomorphic flows in KF. 

PROOF. We omit the proof  of the K-p rope r ty  because it is completely similar 

to the proofs in [8] and [4]. 

To show that the flows in K F  are of finite entropy we prove that P - -  

(Pt, Ps, P~, P~) is a generating partition under the t ransformation $1 for S, E KF.  

We have to show that the discrete S1-P-name determines the continuous 

S,-P-name.  Now, the discrete S r P - n a m e  certainly determines the type of the 

continuous n-block (which depends only on X t of the block). We have to show 

that for given e > 0 the S l -P-name determines the beginning of the continuous 

n-block up to e with probabili ty one. 

Given an n-block it will be nested, with pronanility one, in infinitely many 

m-blocks,  m > n, such that Xt(m) of those blocks will be such that 

Xt(m ) (mod 1) < e. 

Also, because Xt(mod 1) are non-arithmetic,  with probability one, one of the 

n-blocks will have a starting time (mod 1) which is less than e. This will 

determine the starting time of that block up to e. This in turn will determine the 

starting time of all the n-blocks which are nested in this m-b lock  up to e 

(because their type is known). 

Finally, to prove that S, is obtained from a Bernoulli flow it is enough to show 

that there is a measurable  cross-section of the flow such that the induced 

transformation on it is isomorphic to a Bernoulli shift, since the Bernoulli flow 

has a Bernoulli cross-section [3]. 

Such a cross-section is obtained if we consider the base of the nth  continuous 

gadget of the flow (which we did not define formally). Namely, it is the set of all 

points such that the time zero is the beginning of an n-block. 

The proof of the fact that this cross-section is isomorphic to a Bernoulli shift 

can be derived as an application of the cutting and independent  stacking method. 

Such a proof was given in [9] for the G(n) gadgets of the Ornstein-Shields class 

of K-automorphisms.  
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